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Abstract. The renormalized random phase approximation for hot finite Fermi systems is evaluated with
the use of the thermo field dynamics formalism. This approximation treats vibrations of a hot finite Fermi
system as harmonic ones but takes into account the Pauli principle in a more proper way than the usual
thermal RPA, thus incorporating a new type of correlations in a thermal ground state. To demonstrate
advantages of the approximation and to analyze a range of its validity, it is applied to the exactly solvable
Lipkin model. A comparison is made with the exact grand canonical ensemble calculations, results of the
thermal Hartree – Fock approximation and the thermal random phase approximation. The intrinsic energy
of the system, the heat capacity, the average value of the quasispin operator z-projection and the particle
number variance are calculated as functions of temperature. On the whole, the thermal renormalized
RPA appears to be a better approximation than the other two. Its advantage is especially evident in the
vicinity of the phase transition point. It is found that within TRRPA the phase transition occurs at lower
temperature than in THFA and TRPA.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 11.10.Wx Finite-temperature field
theory

1 Introduction

The possibility for giant collective vibrations to be built
on nuclear excited states was anticipated in 1955 by
D.M. Brink in his thesis work [1]. It seems natural that a
compound nuclear state could also serve as a “head” state
for a giant resonance. This hypothesis was confirmed in
1981 by experiments where a giant dipole resonance was
discovered in a hot nucleus produced in heavy ion colli-
sions [2]. Axel-Brink’s hypothesis implies that the struc-
ture of a “head” state doesn’t affect the properties of a
giant resonance built on it. It appeared to be true only in
some cases. In a particular case of a giant resonance in a
hot nucleus some of the GR characteristics (e.g. a width)
are dependent on temperature of a compound state. From
the theoretical point of view it means that to explain a
collective properties of a hot nucleus, it is quite important
to elaborate adequate theoretical methods of describing a
compound state.

A standard technique of treating quantum many-
body systems at finite temperature T is the temperature-
dependent Green function method. But in the early sev-
enties a different technique called “thermo field dynam-
ics” (TFD) was introduced [3]. The TFD approach has
two obviously appealing features: a) temperature effects
arise explicitly as T -dependent vertices, providing a good
starting point for various approximations; b) generaliza-

tion to the time-dependent situation is easy, since temper-
ature and time are independent variables in TFD. Both
the features allow for straightforward extensions of well-
established zero-temperature approximations, as it was al-
ready demonstrated in [4-7].

The main idea behind TFD is a construction of a field
theory in which the grand canonical statistical average of
a quantity A is given by some sort of expectation value
rather than the trace operation

¿ AÀ =
1

Tr(exp (−H/T ))
Tr [A exp (−H/T )]

= 〈0(T )|A|0(T )〉 .

TFD gives rigorous prescriptions how to construct a rep-
resentation in which the “vacuum” expectation value co-
incides with the statistical average. This aim is achieved
by a formal doubling of the Hilbert space of a system.
One introduces a fictitious system which is of exactly the
same structure as the physical one under consideration.
The whole Hilbert space of a hot system is spanned by
the direct product of the eigenstates of the Hamiltonian
H|n〉 = En|n〉 and those of the “tilde” Hamiltonian having
the same eigenvalues H̃|ñ〉 = En|ñ〉. With the doubling of
the Hilbert space one can write the expression for a “vac-
uum” state |Ψ0(T )〉 that is called “the thermal vacuum
state”
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|Ψ0(T )〉 =
1√

Tr(exp (−H/T ))

×
∑
n

exp (−En
2T

)|n〉 ⊗ |ñ〉 . (1)

The vectors |n〉 and |ñ〉 appear as a pair and the function
of |ñ〉 is merely to pick up the diagonal element of A. A
tilde conjugate operator Ã acting in the tilde space is as-
sociated with any operator A acting in ordinary space in
accordance with special rules (see, e.g., [3,4]). The time
- translation operator in the hot system appears to be a
thermal Hamiltonian H defined as H = H−H̃. Properties
of the system excitations are obtained by the diagonaliza-
tion ofH. The thermal vacuum is an eigenstate ofH with a
zero eigenvalue. Thus, the dynamical development of the
system is carried by the thermal Hamiltonian while the
thermal behaviour is controlled by the thermal vacuum.

The TFD approach provides transparent interpreta-
tion of collective motion in a hot Fermi - system. The
thermal vacuum can be regarded as a temperature - de-
pendent wave function of a compound nuclear state. A col-
lective excitation in a hot nucleus is produced by applying
the corresponding collective operator (phonon operator)
to this thermal vacuum state. Properties of the collective
excitation are dependent on the vacuum correlations.

There are two well known approximations of treating
a hot finite Fermi - system: the thermal Hartree - Fock ap-
proximation (THFA) and the thermal random phase ap-
proximation (TRPA). The latter was applied to study a
giant dipole resonance in hot nuclei in a number of papers
[8] (see also the review paper [9] and references therein).
Also some approximations going beyond TRPA were con-
sidered but merely a coupling of thermal particle-hole or
TRPA phonon excitations with more complex ones was
studied [5,6,10,11].

In the paper [7], a thermal approximation of an-
other type was suggested which is still based on col-
lective harmonic-vibration scheme but treats more accu-
rately thermal vacuum state correlations. The approxima-
tion was named the thermal renormalized RPA (TRRPA).
Actually, in [7] an idea by Ken ji-Hara [12] has been ex-
plored. This kind of approaches has been known for a long
time for cold nuclei [13,14] and has recently been applied
to calculate various nuclear properties [15]. Later on, a
more general and consistent formulation of the approx-
imation for a hot system was given [11,16]. But up to
now a range of validity of TRRPA has not been analyzed
and its advantages have not been clearly demonstrated. In
this paper, we apply TRRPA to the exactly solvable Lip-
kin model [17] and compare the approximation with the
results of exact calculations as well as with THFA and
TRPA. A part of the present results has been published
in [18].

The organization of the paper is as follows. A general
formulation of TRRPA combined with some elements of
the TFD formalism are given in Sect. 2. In Sect. 3 we
specify the TRRPA formulae for the Lipkin model. The
results of the three approximate methods (TRRPA, TRPA
and THFA) and a comparison with the exact ones are

discussed in Sect. 4. Section 5 contains the summary and
concluding remarks.

2 Thermal renormalized RPA.
General formulation

Let us consider a system of N-fermions coupled through
two-body interactions. The Hamiltonian is written as

H =
∑
12

t12a
+
1 a2 +

1
4

∑
1234

V1234a
+
1 a

+
2 a4a3 , (2)

where a+ and a are fermion creation and annihilation op-
erators. The one-body part

t12 = T12 − λδ12

contains the kinetic energy matrix T12 as well as the chem-
ical potential λ.

To describe thermal properties of the system within
the TFD formalism, one needs to construct the thermal
Hamiltonian H = H − H̃ and then find the corresponding
thermal vacuum state |Ψ0(T )〉 as an eigenstate of H with
a zero eigenvalue. To solve this problem in a full scale
is obviously impossible. Due to this one has to introduce
some approximations. A good starting point is the thermal
mean field approximation.

Usually, under statistical consideration of an excited fi-
nite Fermi system, the unified statistically averaged mean
field potential is used for all energy states (instead of find-
ing the best single - particle approximation for each of the
states appearing in a partition function). A single - par-
ticle Hamiltonian H0 corresponding to this potential can
be written as

H0 = U0 +
∑

1

ε1α
+
1 α1 ,

where U0 is a constant and ε1 - energies of single - parti-
cle states. According to Bogoliubov’s variational theorem
[19], one can define for a general Hamiltonian (2) a model
grand thermodynamic potential

Ωmod(H) = Ω0+¿ H −H0 À0 (3)

which is an upper limit of the “true” grand potential
Ω(H): Ωmod(H) ≥ Ω(H). Here

Ω0 = ¿ H0 À0 −TS0 ,

¿ H0 À0 =
Tr
[
H0 exp

(
−H0

T

)]
Tr
[
exp

(
−H0

T

)]
The density matrix of the system with the Hamiltonian
H0 is

n1 = ¿ α1α
+
1 À0 ,

and the following expression for the entropy S0 is valid

S0 = −
∑

1

[n1 ln(n1) + (1− n1) ln(1− n1)] .
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The model thermodynamic potential Ω0 can be con-
structed with any single - particle Hamiltonian H0. But,
of course, a choice of the best possible single - particle
approximation which would correspond to the minimal
difference Ωmod(H) − Ω(H) is of special interest. The
single-particle Hamiltonian which provides such a mini-
mization is called a self-consistent Hartree-Fock Hamilto-
nian. To find the corresponding single-particle basis one
should make a unitary transformation D (DD+ = I) of
the Hamiltonian (2) from the initial particle operators
a+

1 , a1 to new HF quasiparticle operators α+
1 , α1

a+
1 =

∑
2

D∗21α
+
2 , a1 =

∑
2

D21α2 . (4)

Unitarity of the transformation provides a conservation of
the commutation rules. Since Ωmod(H) is an upper limit
for Ω(H) equations for the coefficients D can be derived
from the requirement that Ωmod(H) is minimal under the
constraint DD+ = I. These equations are the following:

δ

δD∗12

(
Ωmod −

∑
2

ξ2
∑

3

D∗23D23

)

=
δ

δD∗12

(
¿ H À0 −

∑
2

ξ2
∑

3

D∗23D23

)
= 0

(5)
δ

δD12

(
Ωmod −

∑
2

ξ2
∑

3

D∗23D23

)

=
δ

δD12

(
¿ H À0 −

∑
2

ξ2
∑

3

D∗23D23

)
= 0 ,

which should be completed by the number conserving con-
dition ∑

1

¿ a+
1 a1 À0= N .

Then single-particle energies ε1 are obtained from the
equations

δΩmod
δn1

=
δ

δn1

(
¿ H −H0 À0

+T
∑

1

[n1 ln(n1) + (1− n1) ln(1− n1)]
)

= 0 (6)

or
ε1 =

δ ¿ H À0

δn1
,

if a function n1 has the Fermi - Dirac form

n1 =
[
1 + exp

(ε1

T

)]−1

. (7)

Since in TFD the statistical average is equal to the
expectation value of the corresponding operator with re-
spect to the thermal vacuum state, the variational pro-
cedure should be be reformulated. Namely, let us find a

single-particle basis that diagonalizes the single - particle
part of the Hamiltonian (2) normally ordered with respect
to the thermal vacuum state |Ψ0〉. Using Wick’s theorem
one can rewrite (2) in the form

H = H00 +H11 +H22

H00 =
∑
12

t12ρ21 +
1
2

∑
1234

V1234ρ31ρ42 ,

H11 = :
∑
12

t12a
+
1 a2 +

∑
1234

V1234ρ42a
+
1 a3 : , (8)

H22 = :
1
4

∑
1234

V1234a
+
1 a

+
2 a4a3 : .

where ρij is the density matrix

ρij = 〈Ψ0(T )|a+
j ai|Ψ0(T )〉 .

The unitary transformation (4) with the coefficients sat-
isfying (5) diagonalizes the part H00 +H11 of the Hamil-
tonian (8)

H
HF
≡ H00 +H11 = U0 +

∑
1

ε1α
+
1 α1 ≡ H0 .

Thus, H
HF

is just the required effective single-particle
Hamiltonian H0. The (5) can be rewritten as

∑
2

(
t12 +

∑
34

V1324ρ43

)
D25 = ε5D15 . (9)

In the present notations the particle number conservation
condition takes the form

N =
∑

1

ρ11 =
∑

1

〈Ψ0(T )|a+
1 a1|Ψ0(T )〉

=
∑
1k

D∗1kD1kNk . (10)

The quasiparticle occupation numbers Nk =
〈Ψ0(T )|α+

k αl|Ψ0(T )〉δkl can be determined once an
explicit expression of the thermal vacuum is specified (see
also [11,16]).

The THF Hamiltonian is HHF
= H

HF
− H̃

HF
. It de-

scribes a motion of noninteracting heated quasiparticles
in a self-consistent mean field.

Within THFA the thermal vacuum state |0(T )〉 is the
eigenvector of the uncorrelated thermal Hamiltonian HHF(
H
HF
− H̃

HF

)
|0(T )〉 =

(
H11 − H̃11

)
|0(T )〉

=
∑

1

ε1

(
α+

1 α1 − α̃+
1 α̃1

)
|0(T )〉 = 0

The expression for |0(T )〉 can be obtained from (1) if
one takes as |n〉 and |ñ〉 one-quasiparticle and tilde one-
quasiparticle states with the energies ε1 from (9). But
more fruitful is to use the fact that the solution of the
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above equation is the vacuum for the following thermal
quasiparticle operators β, β̃ :

β1 = x1α1 − y1α̃
+
1 (11)

β̃1 = x1α̃1 + y1α
+
1

If the coefficients x1, y1 are related to the thermal occupa-
tion numbers of the states α+

1 |0〉HF with the energies ε1

as follows
x1 =

√
1− n1 , y1 =

√
n1 ,

where n1 is defined by (7), then

β1|0(T )〉 = β̃1|0(T )〉 = 0 .

The transformation {x, y} is a unitary one. It is named
the thermal Bogoliubov transformation.

The THF Hamiltonian remains diagonal after trans-
formation (11).

HHF =
∑

1

ε1

(
a+

1 a1 − ã+
1 ã1

) {x,y}−→ HHF
=
∑

1

ε1

(
β+

1 β1 − β̃+
1 β̃1

)
Based on the mean field one is able to construct a
temperature-dependent Fock space. The Fock space is gen-
erated by acting with thermal quasiparticle creation op-
erators β+, β̃+ on the thermal HF vacuum

β+|0(T )〉, β̃+|0(T )〉, β+β̃+|0(T )〉, ...

After construction of the T-dependent Fock space of
our system we express the whole thermal Hamiltonian
H = H − H̃, where H is given in (8), in terms of thermal
quasiparticles [11,16]. We get

H = H11 +H22 +H40 +H04 +H31 +H13 (12)

where Hmn consists of terms of the type (β+)m(β)n.
A straightforward way to evaluate new approximations

is to apply the equation of motion method [13]. Here we
start from the thermal RPA since TRRPA can be easily
formulated as its natural extension. As for T = 0, one
has a Raleigh-Ritz variational principle with the thermal
Hamiltonian (12)

〈Ψ0(T )|
[
δQν , [H, Q+

ν ]
]
|Ψ0(T )〉

= ων〈Ψ0(T )|
[
δQν , Q

+
ν

]
|Ψ0(T )〉 (13)

This exact statistical variational problem cannot be solved
in practice and the class of variational functions has to be
restricted. To choose an appropriate trial wave function let
us note that some part of the thermal Hamiltonian (12)
can be expressed as a bilinear form of operators β+

1 β̃
+
2 and

β1β̃2. Namely,

HTRPA = :
∑

1

ε1(β+
1 β1 − β̃+

1 β̃1) +

1
4

∑
1234

U1234

(
(x1y3β

+
1 β̃

+
3 + y1x3β̃1β3)

×(x2y4β
+
2 β̃

+
4 + y2x4β̃2β4)

)
+ (14)

1
4

∑
1234

U1234

(
(x1y3β̃

+
1 β

+
3 + y1x3β1β̃3)

×(x2y4β̃
+
2 β

+
4 + y2x4β2β̃4)

)
: ,

where
U1234 =

∑
5678

V5678D
∗
51D

∗
62D73D84 .

The expression for HTRPA prompts the following form of
a trial wave function (phonon wave function)1:

Q+
ν =

∑
12

ψν12β
+
1 β̃

+
2 − φν12β̃2β1

=
∑
12

ψν12A
+
12 − φν12A12 (15)

If, in addition, the exact thermal vacuum in (13) is re-
placed by the THF vacuum state |0(T )〉, the exact matrix
equation (13) reduces to the TRPA equations for the am-
plitudes ψν24, φ

ν
24 and the excitation energy ων

ε24ψ
ν
24 +

1
2
x2y4

∑
13

U1234(x1y3φ
ν
13 + x3y1ψ

ν
31)

− 1
2
x4y2

∑
13

U1234(x3y1φ
ν
13 + x1y3ψ

ν
31) = ωνψ

ν
24

ε42φ
ν
42 +

1
2
x4y2

∑
13

U1234(x1y3φ
ν
13 + x3y1ψ

ν
31)

− 1
2
x2y4

∑
13

U1234(x3y1φ
ν
13 + x1y3ψ

ν
31) = −ωνφν42 .

At this stageHTRPA (14) becomes diagonal in the phonon
operators. In TRPA the Q+, Q operators are boson op-
erators (the same holds for the bifermionic operators
A+

12 and A12). The index ν runs over the TRPA solu-
tions with positive and negative energies ων . The negative-
energy solutions appear naturally and ensure that the set
of thermal phonon states is complete within the TRPA
approximation. The thermal vacuum state |Ψ0(T )〉 is the
vacuum for thermal phonons, i.e. Qν |Ψ0(T )〉 = 0. In terms
of thermal quasiparticle operators, the TRPA vacuum is
given by

1 If the two-body interaction V1234 contains the pairing term,
the terms β+

1 β
+
2 , β̃+

1 β̃
+
2 and their hermitian conjugates have to

be added to the phonon wave function (15) as it has been done
in [4,5] and also in [6]. Of course, in such a case the present
consideration has to begin with the thermal Hartree - Fock -
Bogoliubov approximation.
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Ψ0(T ) =
1√
N

exp
1
4

[∑
ν

∑
1234

(ψ−1)ν12φ
ν
34A

+
12A

+
34

]
|0(T )〉 ,

where |0(T )〉 is the THF vacuum.
Now we are ready to formulate the thermal renormal-

ized RPA. The main assumption is that the bifermionic
operators A+

12 and A12 are no longer bosonic, as in TRPA,
but obey modified commutation relations [12][

A12, A
+
34

]
= δ13δ24 (1− q1 − q2) ,

where qi are c-numbers which are defined as follows:

〈Ψ0(T )|β+
1 β2|Ψ0(T )〉 = 〈Ψ0(T )|β̃+

1 β̃2|Ψ0(T )〉 = δ12q1

The thermal vacuum state |Ψ0(T )〉 has to be also rede-
fined. It will be done below.

The substitution [12,13]

b12 =
A12√

1− q12
, b+12 =

A+
12√

1− q12
,

with q12 = q1 + q2 leads to bosonic commutation rules for
the operators b12, b

+
12. By analogy with TRPA, we intro-

duce phonon creation operators as

Q+
ν =

∑
12

ψν12b
+
12 − φν12b12

and define the thermal vacuum state as a vacuum for this
new phonons. Then

|Ψ0(T )〉 =
1√
N

exp
1
2

∑
ν

∑
1234

Cν1234b
+
12b

+
34|0(T )〉

where the matrices Cν1234 are defined through∑
12

ψν12C
ν
1234 = φν34 .

It is more convenient to write the new system of equations
in terms of new variables, namely

Ψν24 =
1

x2y4 + y2x4
(ψν24 − φν42) ,

Φν24 =
1

x2y4 − y2x4
(ψν24 + φν42) .

The result is

ε24Ψ
ν
24 +

1
2

∑
13

∑
5678

(V5678D
∗
51D

∗
62D73D84)

×
√

1− q13

√
1− q24(n1 − n3)Ψν31 = ωνΨ

ν
24 (16)

q1 =
∑
ν>0

2

[
(Ψν12x2y1)2 + (Ψν21y2x1)2

]
, (17)

where ε24 = ε2 − ε4. In accordance with its definition the
structure of the new thermal vacuum state differs from

that of the THF- and TRP- approximations. It allows for
a nonvanishing number of thermal quasiparticles, thus in-
corporating a new kind of particle correlations. In partic-
ular, the role of the Pauli principle in its structure is taken
into account in a better way than in the TRPA vacuum
state. This produces in (16) the blocking factors

√
1− qij

that are less than unity and at the first glance effectively
reduce the interaction. But since the system of equations
(16,17) is nonlinear, a real effect of the new correlations
is not so simple.

The (16,17) are coupled to the mean field equations (9)
through the one-particle density matrix ρij (10). In TR-
RPA we cut this coupling assuming for the density matrix
the same form as in THFA or TRPA (i.e. the values Nk
from (10) are taken to be equal to nk (7)). The problem is
strongly simplified due to this approximation. In particu-
lar, the back-dependence of a single-particle motion from
the collective amplitudes ψν12, φ

ν
12 disappears 2.

3 Application of TRRPA to the Lipkin model

Now we specify the TRRPA equations for the Lipkin
model.

This well-known model has been used many times to
justify approximate methods of the many-body theory at
finite temperature. For example, the works [4,21] have
been focused on boson expansion methods and symmetry
breaking in a hot Lipkin system. The so-called mixed state
representation has been formulated and then applied to
the Lipkin model in [21-24]. Within this approach THFA
[24] and TRPA [25] have been studied. The Lipkin model
has also been used as a testing ground for the static path
approximation (SPA) (see, [26]).

We use the version of the Lipkin model with an in-
teraction acting between a pair of particles with parallel
spins only. The model system consists of N fermions dis-
tributed over two levels with degeneracy Ω (Ω = N). The
energy of the lower and upper level is −ε/2 and +ε/2,
respectively. Thus, the Hamiltonian has the form

HLMG
= εJz −

1
2
V (J+J+ + J−J−) , (18)

where the operators of quasispin J and its components
J+, J−, Jz are defined as follows:

J2 =
1
2

(J+J− + J−J+) + J2
z ,

Jz =
1
2

Ω∑
p=1

(
a+

2pa2p − a+
1pa1p

)
,

J+ =
Ω∑
p=1

a+
2pa1p ,

J− = (J+)+
.

2 This back-dependence is the subject of more refined ap-
proximations (see, e.g. [16,20])
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Indices “1” and “2” label the lower and upper levels, re-
spectively, index p enumerates the sublevels.

At the first step, we do the thermal Hartree – Fock ap-
proximation. To this aim, a unitary transformation D (4)
is applied to the initial particle operators a+

ip, aip to trans-
form them into the Hartree - Fock quasiparticle operators
α+
ip, αip and then the thermal Bogoliubov transformation

(11) transforms α, α̃ into thermal quasiparticles.
The coefficients of the D and {x, y} transformations

are determined under the requirement of the minimum of
Ωmod (3).

If the coefficients Dii′ are parametrized as in [27]

D11 = D22 = cos θ, D12 = −D21 = exp(iϕ) sin θ

one gets the following expression for the intrinsic energy
E =¿ H À0= 〈0(T )|H|0(T )〉:

E =
εΩ

2
(y2

2 − y2
1)
[
cos 2θ − χ0(y2

2 − y2
1)

2
sin 22θ cos 2ϕ

]
where χ0 is the effective coupling constant

χ0 =
V (Ω − 1)

ε
.

Now the entropy of the system is

S0 = −2Ω
∑
i=1,2

(y2
i ln yi + x2

i lnxi) .

After variation of Ω0 over the variables θ, ϕ, xi, yi, tak-
ing into account the constraints for xi, yi and the particle
number conservation condition one finds two different so-
lutions depending on the value of the effective coupling
constant χ0 and temperature T .

The first solution (the normal phase) exists if the T-
dependent effective coupling constant χ(T ) ≡ χ0(n1 −
n2) ≤ 1. This solution corresponds to the following values
of variables:

θ = 0, ϕ = 0, ε(T ) = ε ,

n1,2 = y2
1,2 =

1
1 + exp(∓ε/2T )

,

The thermal ground state energy is

E =
εΩ(n2 − n1)

2

and the Hartree - Fock part of the whole thermal Hamil-
tonian H does not depend on temperature.

The second solution (the deformed phase) exists when
χ(T ) ≡ χ0(n1 − n2) > 1. It corresponds to the values of
variables

cos−12θ = χ(T ), ϕ = 0, ε(T ) = εχ(T ),

and
n1,2 = y2

1,2 =
1

1 + exp(∓ε(T )/2T )
.

The energy of the thermal “deformed” ground state is

E =
εΩ(n2 − n1)

4

(
χ(T ) +

1
χ(T )

)
In this regime the thermal Hartree - Fock Hamiltonian
appears to be temperature - dependent.

The value of the chemical potential λ is always equal
to zero due to the symmetry of the Lipkin system.

After extracting the Hartree – Fock part of the thermal
Lipkin Hamiltonian we take into account the interaction
of thermal quasiparticles. The following part ofH

LMG
cor-

responds to HTRPA (14)

H
TRPA

= ε(T )
(
B − B̃

)
− V (n1 − n2)(1 + cos 22θ)

4

×
[(
A+A+ +AA

)
−
(
Ã+Ã+ + ÃÃ

)]
+
V (n1 − n2) sin 22θ

2

[
A+A− Ã+Ã

]
, (19)

where

B =
1
2

Ω∑
p=1

(
β+

2pβ2p − β+
1pβ1p

)
, A+ =

Ω∑
p=1

β+
2pβ̃

+
1p .

In accordance with the discussion of Section 2, we as-
sume the following commutation rules for the thermal bi-
quasiparticle operators A, A+, Ã and Ã+:

[A,A+] = [Ã, Ã+] = N(1− q1 − q2) ≡ N(1− 2q) . (20)

The c-numbers qi are the numbers of thermal quasiparti-
cles in the temperature - dependent ground state

qi =
1
N
〈Ψ0(T )|Nβ

i |Ψ0(T )〉 =
1
N
〈Ψ0(T )|Ñβ

i |Ψ0(T )〉 ,

where Nβ
i =

∑Ω
p=1 β

+
ipβip .

The thermal Hamiltonian (19) is diagonalized in the
space of two one-phonon states3

Q+
1 |Ψ0(T )〉 =

(
ψ1A

+ − φ1A
)
|Ψ0(T )〉 (21)

Q+
2 |Ψ0(T )〉 =

(
ψ2Ã

+ − φ2Ã
)
|Ψ0(T )〉 .

The states (21) have to be orthonormalized4, and tak-
ing account of (20) the following constraints on the am-
plitudes ψ and φ are derived:

ψ2
i − φ2

i = [N(1− 2q)]−1
, i = 1, 2 .

The system of equations for ψi, φi and the phonon fre-
quencies ωi have two solutions. It appears that only a
positive value of ω1 and a negative value of ω2 are allowed
under the requirement that the wave functions Q+

1 |Ψ0(T )〉
3 Due to simplicity of the model there is no sense to introduce

now “new bosonic operators” b+, b, as it was done in Section 2
4 Note that Q+

1 = Q̃+
2
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and Q+
2 |Ψ0(T )〉 are vectors of the Hilbert space. The final

result is the following:

ω1 = ω ≡

√
E2 −

[
εχ(T ) (1− 2q)

(1 + cos 22θ)
2

]2

,

ψ2
1 =

E + ω

2Nω(1− 2q)
, φ2

1 =
E − ω

2Nω(1− 2q)
,

ω2 = −ω , ψ2
2 = ψ2

1 , φ2
2 = φ2

1 ,

where

E = ε(T ) +
εχ(T ) (1− 2q) sin 22θ

2
The equation for q is evaluated with expression (17)

q =
1
2
E − ω
Nω

(22)

It is interesting to note that in the thermodynamic limit,
i.e. as N →∞, q vanishes and the TRRPA equations are
reduced to the TRPA ones.

4 Results and discussion

The numerical calculations are performed for the Lipkin
model with N =10 and ε = 1, i.e. we adopt ε as an energy
unit.

Firstly, we would like to sketch the exact grand canon-
ical calculations with the Lipkin model. To calculate the
grand canonical partition function, one needs the eigenval-
ues of the model Hamiltonian (18) and degeneracies of the
irreducible quasispin representations for different particle
numbers from the range 0 < N ≤ 2Ω. The operators of a
quasispin and its projections J± and Jz form the SU(2) al-
gebra, and the quasispin operator commutes with H

LMG
.

So the Hamiltonian matrix breaks up into submatrices ΘJ
of dimension 2J+1. The model Hamiltonian can be diago-
nalized in each of these subspaces independently. The cor-
responding eigenvalues are denoted by EJ1 , E

J
2 , ...E

J
2J+1.

They can easily be calculated analytically (for small N)
or numerically (see, e.g. [28]).

To determine the degeneracies of the irreducible qua-
sispin representations ΘJ , we use the results of [24]. A
particular distribution of a given number of particles over
two degenerate levels can be characterized by the num-
bers ν1 and ν2, where ν1 is the number of sublevels occu-
pied by particles on both the lower and upper levels; ν2

is the number of sublevels occupied on neither the lower
nor the upper levels. The quasispin J of the state is deter-
mined by the distribution of the rest of particles over the
2τ = Ω− ν1− ν2 sublevels. The number 2(τ + ν1) is equal
to the number of particles. The dimension of the subspace
of the states with ν1 occupied and ν2 empty sublevels is
22τ . There exist Ω!/(2τ)!νi!ν2! such distinct subspaces for
fixed τ and ν1. Each of them may be decomposed into
irreducible subspaces with fixed quasispin values Θτ (ap-
pearing once), Θτ−1 (appearing gτ1 times) Θτ−2 (appear-
ing gτ2 times), . . . , Θτ−k (appearing gτk times), . . . , Θτ−[τ ]

Fig. 1. The energy ω of the lowest excited state as a function
of T for two values of the effective coupling constant χ0 = 0.95
and χ0 = 4.0. Notation: the TRRPA results – solid lines; the
TRPA results – dashed lines

(appearing gτ[τ ] times). Here

gτk =
(2τ)!

k!(2τ − k)!
− (2τ)!

(k − 1)!(2τ − k + 1)!
.

and [τ ] = τ , if τ is integer, [τ ] = τ−1/2 if τ is half-integer.
Thus, the exact grand partition function of our ensem-

ble is

Z(T ) =
∑
τν1ν2

Ω!
(2τ)!ν1!ν2!

×
∑
k

gτk
∑
m

exp
[
−E

τ−k
m − 2(τ + ν1)λ

T

]
, (23)

More detailed explanations and expressions for grand
canonical averages of energy, Jz-projection and the num-
ber of particles can be found in [18,24].

We start from the discussion of the T-dependence of
ω (Fig. 1). It seems appropriate to distinguish two cases:
a) χ0 < 1; b) χ0 > 1. A key for understanding a dis-
played behaviour of ω(T ) is that in the present version
of the Lipkin model heating effectively weakens the inter-
action of particles since at T 6= 0 the effective coupling
constant χ0 is multiplied by a thermal factor n1−n2 < 1;
hence χ(T ) < χ0 and χ(T ) vanishes when T →∞. In the
case a) the system is in the normal phase at T = 0 and
stays there when T →∞. Then ω → ε with increasing T
due to vanishing of the effective interaction. A picture is
more complicated if χ0 > 1. Then, the system is in the
deformed phase at T = 0. In this phase the distance be-
tween single-particle levels is proportional to V (n1 − n2)
and goes down when temperature increases. As a result,
the energy ω of the excited state goes down as well. But
near the point Tcr = ε

2 ln−1 χ0+1
χ0−1 ' 1.0, where the temper-

ature dependent effective coupling constant χ(T ) = 1, the
rearrangement of the Hartree – Fock field (i.e. the phase
transition) occurs and at T > T

cr
the system appears to

be already in the normal phase. Note that within TRPA
the energy ω vanishes at T = T

cr
whereas within TRRPA
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Fig. 2. The average energy 〈H〉 as a func-
tion of temperature T for three values of the
effective coupling constant a) χ0 = 0.5; b)
χ0 = 0.95; c) χ0 = 4.0. The exact results (the
grand canonical ensemble calculations) – open
circles; the THF results – short-dashed lines;
the TRPA results – long-dashed lines; the TR-
RPA results – solid lines

ω stays finite. With a further increase in T ω starts to
increase and again goes to ε when T →∞. As one can see
in Fig. 1, within TRRPA the phase transition appears at a
slightly lower temperature than within TRPA. The reason
for this will be discussed later on. A noticeable difference
between the TRRPA and TRPA results is just near the
critical temperature, and at much lower or higher T both
the approximations give close results. Note that a tem-
perature dependence of ω on T within TRPA displayed
in Fig. 1 is in complete agreement with that calculated in
[21].

Now we discuss T–dependencies of the intrinsic energy
〈H〉, the quasispin z-projection 〈Jz〉 and a particle num-
ber variance ∆N . The exact values 〈H〉

GCE
, 〈Jz〉GCE and

∆N
GCE

are calculated with the grand canonical partition
function (23). The expressions for 〈H〉, 〈Jz〉 and ∆N in
TRRPA are obtained by evaluation of the expectation val-
ues of the corresponding operators over the thermal vac-
uum state |Ψ0(T )〉. While evaluating 〈H〉

TRRPA
the THF

ground state energy E has to be taken into account as
well

〈H〉TRRPA =
Ω(n2 − n1)(1− 2q)

2
[
E − εχ(T ) sin 22θ

]
+

(E − ω) (ε(T ) + ω)
2ω

× (n2 − n1)2 + 1
2(n2 − n1)

. (24)

The expression for 〈H〉
TRPA

is followed from (24) if one
puts q = 0. The THF ground state energy of both the
phases has been evaluated in Section 3.

The results for 〈H〉 and 〈H〉
GCE

are displayed in Fig. 2.
Three typical cases are shown: a) a weak coupling case
χ0 = 0.5; b) an intermediate coupling case χ0 = 0.95; c)
a strong coupling case χ0 = 4.0. At χ0 = 0.5 the results
of TRRPA, TRPA and THFA are very close to each other
and to the exact one. Nevertheless the TRRPA curve is
closer to the exact result.

The case b) is more interesting (it has already been
discussed in [18]). At χ0 = 0.95 the system is close to
the phase transition point. Here, the advantages of TR-
RPA appear to be most evident. The difference between
the approximations is noticeable when T < 0.3− 0.5 and
then with the increase in T , results of different approxima-

tions approach the exact one. We would like to point out
that TRPA overestimates the intrinsic energy of the sys-
tem. This is because the quasiboson approximation is used
together with a variational procedure (see, [27]). Taking
into account the Pauli principle more correctly TRRPA
removes this drawback of TRPA and improves the de-
scription of the ground state energy of a hot system.

In the case c) the system is in the deformed phase at
T = 0. Although the interaction is strong, the results of
TRRPA, TRPA and THFA do not deviate far from each
other at T < T

cr . It means that already THFA is good
enough to allow for the main part of thermal quasiparticle
correlations and the other approximations give only minor
corrections to THFA. But in the vicinity of T

cr TRRPA
is again the best approximation.

One could already notice that if χ0 > 1, all the three
approximations predict the phase transition in the system
with the increase in T . The transition between the two
phases manifests itself as a break point of the average en-
ergy 〈H〉 in THFA and TRRPA and as a singular point
of this function in TRPA. Thus, within TRPA one deals
with a second order phase transition whereas in THFA and
TRRPA with a phase transition of the first order. Obvi-
ously, the phase transition does not occur in reality, i.e. in
exact calculations. This is quite a typical situation when
approximate methods are applied to study finite many-
body systems. THFA, TRPA and TRRPA predict phase
transitions of different characters; also a quality of the de-
scription of a system evolution in the vicinity of a critical
temperature is different. It is more clearly seen in Fig. 3,
where a dependence of a heat capacity C on T is displayed.
The heat capacity is calculated as a partial derivative with
respect to T of the intrinsic energy (24). At any value of
χ0 the exact heat capacity as a function of T has quite
a sharp maximum at T ∼ 0.5. In the weak interaction
case all the three approximations describe C(T ) well. But
in the cases b) and c) all the approximations demonstrate
much sharper behaviour of C(T ) in the region of the max-
imum. Moreover, in the case c) maxima of approximate
functions are at noticeably higher temperatures than that
of exact one. Note also that C(T ) calculated within TRPA
has a singular discontinuity at T = T

cr
whereas the THFA

and TRRPA
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Fig. 3. The heat capacity C as a function of
temperature T for three values of the effective
coupling constant a) χ0 = 0.5; b) χ0 = 0.95;
c) χ0 = 4.0. For notation, see Fig. 2

heat capacities have jump discontinuities (naturally,
this is in correspondence with the above-mentioned char-
acter of a phase transition in different approximations).

As it is seen in Fig. 2c, the phase transition in TRRPA
occurs at slightly lower T than in TRPA and THFA. In
the latter approximations the phase transition is at the
same value T

cr
because the rearrangement of the Hartree

– Fock field and the collapse of the TRPA collective state
are at the same value of χ(T ). Within TRRPA a picture of
the phase transition is the following. In the vicinity of Tcr
one can compare the values of 〈H〉

TRRPA
calculated with

the two different mean field configurations corresponding
to two phases. It appears that the value of 〈H〉TRRPA cor-
responding to the normal phase remains lower than the
value of 〈H〉TRRPA calculated with the deformed mean
field within a small temperature range at T < Tcr , where
Tcr is the critical temperature of the phase transition in
THFA 5. In other words, within TRRPA the normal phase
of the system survives in a larger temperature range than
within THFA or TRPA. This fact is intimately connected
with the behaviour of the collective state energy as a
function of the coupling constant. One cannot calculate
〈H〉

TRPA
at χ(T ) > χ

cr
because the value of ω is imag-

inary there. But within TRRPA it is possible because ω
remains real and finite at any value of χ(T ). On the whole
a curve C(T ) calculated within TRRPA is in better agree-
ment with the exact one than the TRPA result. Thus,
TRRPA describes the slope of the function 〈H(T )〉 better
than THFA and TRPA.

The expectation value of the operator Jz is propor-
tional to the difference of the numbers of particles on the
lower and upper levels of the system. Hence, with the in-
crease in T Jz → 0. But the behaviour of Jz appears to be
dependent on χ0. The expressions for Jz for the different
phases have the following forms:

〈Jz〉TRRPA =


Ω(n2 − n1)(1− 2q)

2
(Normal phase)

− εΩ(1− 2q)
2V (Ω − 1)

(Deformed phase)

5 Let us remember that the normal phase exists on the right-
hand side from the phase transition point.

Within THFA and TRPA the expression for 〈Jz〉 appears
to be the same. In the deformed phase 〈Jz〉 does not de-
pend on temperature. This seems to be the result of the
two opposite tendencies. With the increase in T the dif-
ference f1 − f2 (and hence the value N1 − N2) decreases
n1−n2 but at the same time the difference of the energies
of the single-particle levels decreases (see the correspond-
ing expression for ε(T ) in Sect.3) and this compensates
the first effect.

As one can see in Fig. 4, the results of different ap-
proximations in the normal phase (the cases a) and b)
are very close to each other as well as to the exact one.
The largest difference between them is ∼10% at χ0 = 0.95
and T ≤ 0.1. Again the results of TRRPA are in better
agreement with the exact ones than those of TRPA (and
THFA). The worst agreement with the exact result is for
the strong coupling case (Fig. 4c). At T < Tcr the reason
is again a phase transition which is a result of the approx-
imations applied but not the real property of the system.
Moreover, in the normal phase, the exact value 〈Jz〉GCE
goes to zero faster than the approximate one 〈Jz〉TRRPA .
In spite of these discrepancies one can make a conclusion
about a qualitative agreement between the exact and ap-
proximate results in this case too.

The expression for the particle number variance
∆NTRRPA

is

∆NTRRPA
=
√

2Nn1n2(1− 2q) .

This expression is valid in both the normal and deformed
phase.

To evaluate this formula, one needs the expectation
value with respect to |Ψ0(T )〉 of two-body operator N̂2

where N̂ is the particle number operator in the ordinary
space. This matrix element was expanded on the TR-
RPA phonon (21) basis. Then, in this expansion only the
phonon vacuum and two-phonon terms were taken into
account. The two-phonon terms give a correction of an
order of ∼ Ωq. A contribution of four-phonon and even
more complex terms seems to be small.

From the expression for ∆N one can see that in TRPA
and THFA the particle number fluctuations have only the
thermal origin (we deal with the grand canonical ensem-
ble). At the same time, within TRRPA quantum fluctua-
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Fig. 4. The average value of the quasispin pro-
jection 〈Jz〉 as a function of temperature T for
three values of the effective coupling constant
a) χ0 = 0.5; b) χ0 = 0.95; c) χ0 = 4.0 For
notation, see Fig. 2

tions exist as well. Note that quantum fluctuations slightly
damp thermal ones. The reason for this destructive inter-
ference of the two types of fluctuations seems to be the
Pauli principle. The nonvanishing q values mean that the
single-particle levels are already partially occupied and
this is an obstacle for their thermal feeding with the in-
crease in temperature. But the link between the quantum
and thermal fluctuations appears to be quite intimate be-
cause, when T → 0 the particle variance vanishes, i.e. the
quantum fluctuations disappear together with the thermal
ones.

In the cases of weak and intermediate couplings the
difference between exact and approximate results for ∆N
is 2-3%, though the TRRPA results are closer to the
exact ones. In the strong coupling case the exact and
approximate results noticeably differ only in the vicin-
ity of Tcr . Here, TRRPA works also better than the
other two approximations (their results coincide with each
other).

5 Concluding remarks

The results of the present consideration can be sum-
marized as follows. The thermal renormalized random
phase approximation is formulated and for the first
time applied to the exactly solvable Lipkin model. The
thermodynamic properties of the model are calculated
within THFA, TRPA and TRRPA and compared with
the exact calculations within the grand canonical en-
semble.

On the whole, the results of TRRPA are in better
agreement with the exact ones than those of TRPA and
THFA. In all cases TRRPA describes quantitatively bet-
ter the statistical properties of the Lipkin model though
in many cases the improvement is not large. Within TR-
RPA the phase transition appears to be of the first order
like in THFA and not of the second order like in TRPA.
TRRPA gives a much better description of the intrinsic
(or thermal ground state) energy at T slightly above T

cr
.

Actually, the exact calculations do not demonstrate the
phase transition and its appearance is a result of the ap-
proximations used. But nevertheless TRRPA gives a bet-

ter description of the system temperature behaviour than
the other approximate methods.

The main reason for these TRRPA advantages is the
allowance for a nonvanishing number of thermal quasi-
particles in the TRRPA thermal vacuum state. Due to
this, the role of the Pauli principle is taken into account
more properly than in the standard TRPA and a new
type of correlations appearing in the thermal vacuum
structure affect the statistical properties of the Lipkin
model.

The new correlations prevent the collapse of a collec-
tive state at large coupling constant, and this appears to
be intimately connected with the system behavior in the
vicinity of the critical temperature. Though the q value is
not large, as a rule it reaches the maximum near and at
the phase transition point (see (22) and Fig. 1), and this
explains our results. Also, the shift of the phase transi-
tion temperature in TRRPA as compared to TRPA (and
THFA) seems to be a quite interesting result. This shift
pushes the maximum of the heat capacity in the right di-
rection (Fig. 4c).

It is worthwhile to note that with increasing T and N ,
results of all the approximate methods improve rapidly
and at T ≥ 3ε the difference between exact and approx-
imate results is invisible. But it seems that the Lipkin
model overestimates decreasing of a two-body interaction
with temperature since it does not reproduce appearance
of particle-particle and hole-hole excitations at T 6= 0 as it
occurs in real nuclear spectra.

Evidently, the present approximation can be improved
and some additional corrections can be taken into account.
Many suggestions of such an improvement can be found in
the literature [13-15], especially in the papers devoted to
the self-consistent RPA [16,20]. We suppose to continue
our efforts in this direction.
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